中国电力 ›› 2020, Vol. 53 ›› Issue (2): 92-98.doi: 10.11930/j.issn.1004-9649.201812136

• 新能源 • 上一篇    下一篇

基于CFD与风洞实验的缩比风力机三维效应修正公式效果分析

许小明1, 袁志强1, 李庆煜1, 颜顺林1, 黄宸武1, 杨科2   

  1. 1. 宜春学院 物理科学与工程技术学院, 江西 宜春 336000;
    2. 中国科学院工程热物理研究所, 北京 100190
  • 收稿日期:2019-01-04 修回日期:2019-08-23 出版日期:2020-02-05 发布日期:2020-02-05
  • 通讯作者: 黄宸武(1966-),男,通信作者,博士,教授,从事风能利用技术研究,E-mail:chwhuang@163.com E-mail:chwhuang@163.com
  • 作者简介:许小明(1975-),男,硕士,讲师,从事信息控制系统研究,E-mail:ive99@126.com;袁志强(1980-),男,硕士,讲师,从事无线通信与控制研究,E-mail:29253346@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51366013)

Effectiveness Analysis of Three-dimensional Effect Correction Formulas Based on the CFD and Wind Tunnel Experiment of the Scaled Wind Turbines

XU Xiaoming1, YUAN Zhiqiang1, LI Qingyu1, YAN Shunlin1, HUANG Chenwu1, YANG Ke2   

  1. 1. School of Physics and Engineering Technology, Yichun University, Yichun 336000, China;
    2. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2019-01-04 Revised:2019-08-23 Online:2020-02-05 Published:2020-02-05
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51366013)

摘要: 以NREL Phase VI及其缩比风力机为研究对象,结合三维CFD数值模拟与二维翼型风洞实验,在低雷诺数下对Snel、Lindenburg、Du & Selig和Chaviaropoulos & Hansen 4种三维效应修正公式的修正效果进行了比较分析,结果显示修正效果各不相同,修正值普遍大于真实值,综合比较表明Du & Selig效果最佳,且Lindenburg、Snel、Chaviaropoulos & Hansen依次变差。修正效果与叶片尺度相关性从小到大的次序:在尖速比λ=5.39时整个叶展区域为Snel、Chaviaropoulos & Hansen、Lindenburg、Du & Selig;在λ=8.00时的整个叶展区域和λ=10.00时的叶中、叶片外侧区域均为Du & Selig、Lindenburg、Snel、Chaviaropoulos & Hansen;λ=10.00时的叶根区域为Lindenburg、Snel、Chaviaropoulos & Hansen、Du & Selig。

关键词: 风力机, 叶片, 三维效应, 修正公式

Abstract: Based on the NREL Phase VI and its scaled wind turbines, and combined with 3D CFD numerical simulations and 2D airfoil wind tunnel experiments, the correction effects of four three-dimensional effect correction formulas including Snel, Lindenburg, Du & Selig, Chaviaropoulos & Hansen in low Reynolds number are compared and analyzed. The results show that their effectiveness differs from each other while the correction value is generally larger than the real value. Specifically from the comprehensive comparison, Du & Selig formula demonstrates the best effect, and the performance can be ranked in descending order as Lindenburg, Snel and Chaviaropoulos & Hansen. Regarding the correlation between the correction effect and the blade scale from small to large when λ=5.39 in the whole blade area, it can be ordered as Snel, Chaviaropoulos & Hansen, Lindenburg, Du & Selig; when λ=8.00 in the whole blade area and λ=10.00 in the middle or outboard blade area, the order is Du & Selig, Lindenburg, Snel, Chaviaropoulos & Hansen; while when λ=10.00 in the root blade area, it goes like Lindenburg, Snel, Chaviaropoulos & Hansen, Du & Selig.

Key words: wind turbine, blade, three-dimensional effect, correction formulas